metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander J. Blake,* Michael W. George, Peter Hubberstey, Roberto Lopez Garcia and Claire Wilson

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.003 Å R factor = 0.029 wR factor = 0.071 Data-to-parameter ratio = 19.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichloro[2-chloro-6-(mercaptopyridin-2-yl)pyridine]copper(II)

The title compound, $[CuCl_2(C_{10}H_7ClN_2S)]$, crystallizes as neutral CuCl₂L [L = 2-chloro-6-(mercaptopyridin-2-yl)pyridine] molecular units. The copper(II) centre adopts a distorted four-coordinate geometry comprising the two pyridinyl N atoms of the bidentate chelating ligand [Cu-N 2.012 (2) and 2.029 (2) Å] and the two chloride anions [Cu-Cl 2.2049 (6) and 2.2335 (6) Å]. The dihedral angle δ quantifying the extent of the distortion of the geometry from square planar ($\delta = 0^{\circ}$) towards tetrahedral ($\delta = 90^{\circ}$) is 36.81 (6)°. There is evidence for the formation of dimeric units *via* Cl···S interactions.

Comment

The structure of CuCl₂L [L = 2-chloro-6-(mercaptopyridin-2yl)pyridine], (I), is that of a neutral molecular complex (Fig. 1) in which the copper(II) centre has a distorted four-coordinate geometry comprising the two N atoms of the bidentate chelating ligand L [Cu-N 2.012 (2) and 2.029 (2) Å] and the two chloride anions [Cu-Cl 2.2049 (6) and 2.2335 (6) Å]. The coordination geometry lies between square planar and tetrahedral, with a dihedral angle (δ) between the CuN₂ and CuCl₂ planes of 36.81 (6)°. Distortion from planarity is unusual for copper(II) complexes. Here, it is attributed to steric repulsion between a coordinated chloride anion and the Cl atom at the 2-position of the pyridine ring [Cl···Cl 3.787 (1) Å].

There is considerable evidence for dimer formation through Cl···S interactions (Fig. 2). Not only is the Cu···Cl distance to the chloride anion involved in dimer formation [2.2335 (6) Å] significantly longer than that to the other chloride anion [2.2049 (6) Å], but also the U_{eq} value for the former [0.02691 (13) Å²] is considerably smaller than that for the

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

m96

Printed in Great Britain – all rights reserved

Alexander J. Blake et al. • C₁₀H₇Cl₃CuN₂S

Received 28 January 2002

Accepted 31 January 2002

Online 22 February 2002

A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

latter $[0.03713 (16) Å^2]$. A search of the Cambridge Structural Database (Allen & Kennard, 1993) revealed that the intradimer $Cl \cdot \cdot S$ separation [3.4085 (9) Å] is typical for the distance separating the chloride anion of a CuCl₂ fragment and the S atom of either an aromatic or an aliphatic thioether.

Experimental

The title compound, (I), was obtained as a green lath-shaped crystal in the midst of a crop of green acicular crystals. Both had been produced by vapour phase diffusion of diethyl ether into a methanol solution of the product of the reaction between a methanol solution (10 ml) of copper(II) chloride dihydrate (0.199 g, 0.704 mmol) and a methanol solution (20 ml) of 2-(3,5-dimethylpyrazol-1-yl)-6-(mercaptopyridin-2-yl)pyridine (0.198 g, 0.701 mmol). This last ligand had been previously prepared by treatment of 2-chloro-6-(mercaptopyridin-2-yl)pyridine with 3,5-dimethylpyrazole in the presence of sodium hydride. Mass spectrometric (electrospray), IR and analytical studies of the bulk product suggested that it comprised dichloro[2-(3,5-dimethylpyrazol-1-yl)-6-(mercaptopyridin-2-yl)pyridine]copper(II) (yield: 0.123 g, 0.290 mmol, 42%). It is assumed that the lath-shaped crystal was a rogue crystal resulting from the presence of a small amount of unreacted 2-chloro-6-(mercaptopyridin-2-yl)pyridine in the sample of 2-(3,5-dimethylpyrazol-1-yl)-6-(mercaptopyridin-2-yl)pyridine.

A view of the structure showing the pairwise centrosymmetric Cl...S interactions leading to dimer formation. Displacement ellipsoids are drawn at the 30% probablility level. [Symmetry code (i): 3/2 - x, 1/2 - y, 1 - z.]

Crystal data

a b

с

C10H7Cl3CuN2S	$D_x = 1.816 \text{ Mg m}^{-3}$	
$M_r = 357.13$	Mo $K\alpha$ radiation	
Monoclinic, $C2/c$	Cell parameters from 3638	
a = 13.1739 (12) Å	reflections	
b = 9.6928(9) Å	$\theta = 2.7 - 26.8^{\circ}$	
c = 21.137 (2) Å	$\mu = 2.42 \text{ mm}^{-1}$	
$\beta = 104.510 \ (2)^{\circ}$	T = 150 (2) K	
$V = 2612.9 (4) \text{ Å}^3$	Lath, green	
Z = 8	$0.36 \times 0.11 \times 0.06 \text{ mm}$	

Data collection

Bruker SMART APEX area-	3191 independent reflections
detector diffractometer	2709 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.026$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.2^{\circ}$
(SADABS; Bruker, 2001)	$h = -16 \rightarrow 17$
$T_{\min} = 0.782, T_{\max} = 0.870$	$k = -12 \rightarrow 12$
12577 measured reflections	$l = -25 \rightarrow 26$
Refinement	
\mathbf{P} (\mathbf{r})	$4/5^{2}(E^{2})$ (0.025 D) ²

 $w = 1/[\sigma^2(F_o^2) + (0.035P)^2]$ Refinement on F $R[F^2 > 2\sigma(F^2)] = 0.029$ + 3.807P] where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.071$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.04 $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$ 3019 reflections $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ 154 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cu1-Cl1A	2.2335 (6)	Cu1-N1	2.029 (2)
Cu1-Cl1B	2.2049 (6)	Cu1-N11	2.012 (2)
Cl1A-Cu1-Cl1B	97.73 (2)	N1-Cu1-N11	87.58 (7)
Cl1A - Cu1 - N1	90.65 (5)	C2-N1-Cu1	121.67 (15)
Cl1A - Cu1 - N11	152.02 (5)	C6-N1-Cu1	119.37 (14)
Cl1B-Cu1-N11	95.96 (5)	C12-N11-Cu1	118.91 (14)
Cl1B-Cu1-N1	154.01 (5)	C16-N11-Cu1	123.11 (15)

After location from ΔF syntheses, the aromatic H atoms were placed geometrically and refined with a riding model in which the C-H distance was constrained to be 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* and *SHELXTL/PC* (Bruker, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2001).

We thank the EPSRC for the award of a diffractometer and for support to RLG.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl.
- Cryst. 26, 343–350. Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). *SADABS* (Version 2.03) and *SMART* (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.